Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

نویسندگان

  • José Torrent
  • María C. Del Campillo
چکیده

Soil cation exchange capacity (CEC) depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM) in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH) of 43% (HM43). Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg). Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC. Additional key words: soil organic carbon; relative humidity. Abbreviations used: ACCE (active lime); CCE (calcium carbonate equivalent); CEC (cation exchange capacity); HM (hygroscopic moisture); HMx (hygroscopic moisture in equilibrium with a relative humidity x); OC (organic carbon); RH (relative humidity). Citation: Torrent, J.; Del Campillo, M. C.; Barrón, V. (2015). Short communication: Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe. Spanish Journal of Agricultural Research, Volume 13, Issue 4, e11SC01, 3 pages. http://dx.doi.org/10.5424/sjar/2015134-8212. Received: 26 Jun 2015. Accepted: 12 Nov 2015 Copyright © 2015 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Funding: Part of the soil samples used were collected and characterized in the framework of a study funded by the former Spanish Ministry of Science and Innovation (Project AGL2011-29893-C02-02) and the European Regional Development Fund. Competing interests: The authors have declared that no competing interests exist. Correspondence should be addressed to José Torrent: [email protected] Cation exchange capacity (CEC) is an important soil property because it influences the ability of soil to retain essential nutrients; also, it protects soil from acidif icat ion and groundwater f rom cat ion contamination. CEC results from the presence of a variety of negatively charged mineral and organic surfaces. Because water vapour adsorption is a measure of specific surface area in soils (Quirk, 1955; Newman, 1983), CEC and hygroscopic moisture (HM) are closely related in soil populations with similar types and proportions of negative surfaces involved in cation exchange processes. For instance, coefficients a and b in the regression equation CEC = a + bHM, where CEC is expressed in cmolc/kg and HM in g water/kg soil, were found to be 2 cmolc/kg and 0.544 cmolc/g water, respectively, in smectitic soils, and 1 cmolc/kg and 0.454 cmolc/g water, respectively, in kaolinitic soils of New Zealand (Churchman & Burke, 1991). The aim of this work was to explore whether CEC could be accurately predicted from HM in western European agricultural soils ranging widely in physical, chemical and mineralogical properties. For this purpose, we used a total of 243 soil samples from different agricultural areas of Western Europe. Most of the samples (204) were obtained from regions with a Mediterranean climate mainly in Portugal and Spain, and the others (39) from regions under a temperate humid climate in France, Germany, Great Britain, Italy and The Netherlands. The studied soils belonged to the Alfisol, Entisol, Inceptisol, Mollisol, Ultisol and Vertisol orders in Soil Taxonomy (Soil Survey Staff, 1999). No saline, sodic or gypsiferous soils, or soils with organic carbon (OC) contents higher than 35 g/kg were included. Soil samples were air-dried, grounded to < 2 mm and stored for several weeks to more than 30 years before analysis. Soils had a wide variation range in carbonateJosé Torrent, María C. Del Campillo and Vidal Barrón Spanish Journal of Agricultural Research December 2015 • Volume 13 • Issue 4 • e11SC01 2 Table 1. Summary of the properties of the 243 soil samples used to construct the regression models Property1 Minimum Maximum Mean Standard deviation Median Carbonate-free clay (g/kg) 23 706 215 134 186 Organic carbon (g/kg) 1.4 34.0 10.1 4.9 9.4 CCE (g/kg)2 30 679 254 175 237 ACCE (g/kg)2 12 234 88 58 68 pH (water) 4.3 8.6 – – – CEC (cmolc/kg) 2 71 18.3 11.7 15 HM43 (g/kg) 2.2 80.0 21.7 14.8 17.7 Fed (g/kg) 0.6 35.8 11.0 7.0 10.7 1 CCE, calcium carbonate equivalent; ACCE, active lime; CEC, cation exchange capacity; HM43, hygroscopic moisture at 43% relative humidity; Fed, citrate/bicarbonate/dithionite-extractable Fe; 2 For carbonate-containing soils (n = 77). free clay content, OC, calcium carbonate equivalent (CCE), active lime (ACCE), pH, cation exchange capacity (CEC) and Fe oxides content (Table 1). Each soil sample was leached with 1 M ammonium acetate (pH 7), isopropanol and 1 M NaCl (pH 7). CEC was determined by distillation of NH4 in the final leachate with a Hoskins apparatus. The value of HM at an equilibrium air relative humidity (RH) of 43% (HM43) was adopted in this study because, in practice, a RH level of 43% can be readily reached in the atmosphere of a closed space (e.g., a desiccator) in equilibrium with a saturated potassium carbonate solution at temperatures over a wide range —its temperature independence makes potassium carbonate superior to other salts— and corresponds to a coverage of about 1.7 layers of water (Churchman et al., 1991). In the present study an alternative procedure to determine HM was adopted: for each sample HM was determined at different RHs over the 30–50% RH range and then HM43 was estimated from the fitted regression line. For the HM measurement at each RH, 4–6 g of soil placed in a weighing bottle were equilibrated with the air in a 200 dm3 cupboard fitted with a small fan to reduce the time of equilibration to about 1 day. The RH in the cupboard was measured with a MicroLite Temperature/RH Data Logger (fourtec – Fourier Technologies, USA) and only when the RH for the 24 hours preceding weighing of the soil oscillated by less than 2% in absolute value the HM measurement was deemed to be acceptable. In passing, it should be mentioned that, in practice, HM43 can also be estimated from the HM value at x RH by using the equation: HM43 = HMx × [1 + (x – 43) × 0.0117] [1] where HM43 and HMx are the HM values at a relative humidity of 43% and x, respectively. This equation was derived from the results for 49 soils studied elsewhere (Sánchez-Alcalá et al., 2014) and is valid for the 30–50% RH range. Figure 1 testifies to the strong correlation between CEC and HM43 (R2 = 0.962). The standard deviation was 2.30 cmolc/kg (i.e., 95% of all observations should fall within ± 4.6 cmolc/kg from the regression line). Table 2 shows the intercept and slope of the CEC–HM43 regression lines corresponding to the four pairs of soil subgroups obtained by classifying the soils according to OC content (above or below 10 g/kg), CEC for the clay fraction (above or below 70 cmolc/kg), presence of carbonate, and moisture regime (xeric or udic; Soil Survey Staff, 1999). Significantly (p < 0.05) different intercepts were found between calcareous and noncalcareous soils, and significantly (p < 0.05) different intercepts and slopes between soil groups differing in CEC for the clay fraction. Linear slopes Figure 1. Cation exchange capacity as a function of hygroscopic moisture in equilibrium with a relative humidity of 43%. 80

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین ظرفیت زراعی و نقطه پژمردگی دایم از روی برخی خصوصیات فیزیکی و شیمیایی خاک

Field capacity (FC) and permanent wilting point (PWP) are important factors affecting irrigation scheduling and field management. FC and PWP can be estimated from some of the soil physical and chemical properties. Pressure Plate apparatus is usually used for determination of FC and PWP, but this is a time-consuming and laborious procedure besides, the apparatus may not be available in many labo...

متن کامل

تخمین ظرفیت زراعی و نقطه پژمردگی دایم از روی برخی خصوصیات فیزیکی و شیمیایی خاک

Field capacity (FC) and permanent wilting point (PWP) are important factors affecting irrigation scheduling and field management. FC and PWP can be estimated from some of the soil physical and chemical properties. Pressure Plate apparatus is usually used for determination of FC and PWP, but this is a time-consuming and laborious procedure besides, the apparatus may not be available in many labo...

متن کامل

اثر کشت بر رطوبت قابل دسترس خاک با استفاده از توابع انتقالی پارامتریک

Soil tillage changes chemical and physical properties which can change the soil available water capacity. For understanding the effect of soil disturbance in cultivated soil on available water, parameter pedotransfer functions of these soils created and their results were compared with measured available water by moisture release curves. For this purpose 54 soil samples were taken from cultiva...

متن کامل

Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...

متن کامل

مقایسه توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی در برآورد گنجایش

Measuring the cation exchange capacity (CEC) as one of the most important chemical soil properties is very time consuming and costly. Pedotransfer functions (PTFs) provide an alternative to direct measurement by estimating CEC. The objective of this study was to develop PTFs for predicting CEC of Guilan province soils using artificial neural network (ANN) and multiple-linear regression method a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015